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Abstract

The modeling of carbon nanotube-metal contacts is important from both

basic and applied view points. For many applications, it is important to design

contacts such that the transmission is dictated by intrinsic properties of the

nanotube rather than by details of the contact. In this paper, we calculate the

electron transmission probability from a nanotube to a free electron metal,

which is side-contacted. If the metal-nanotube interface is sufficiently ordered,

we find that k-vector conservation plays an important role in determining the

coupling, with the physics depending on the area of contact, tube diazneter

and chirality. The main results of this paper are: (i) conductance scales with

contact length, a phenomena that has been observed in experiments and (ii)

in the case of uniform coupling between metM and nanotube, the threshold

value of the me_al Fermi wave vector (below which couplirlg is b_sigriifica_t)

det)cnds on ctiiralit, y. Disorder and small phase coherence length rela.x t,tlc

need for k-vector conservation, thereby making the coupling stronger.
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Introduction: Carbon nanotubes represent an intriguing new material that has at-

tracted much attention both from theorists and experimentalists since the early 1990s. 1

Particularly exciting is the possibility of one dimensional metallic conductors at room tem-

perature that can be used as a probe in scanning probe microscopy or as a low resistance

ballistic interconnect for electron devices. _-4 From a more basic point of view, much can

be learnt about the physics of conduction by studying the conductance of such a one di-

mensional conductor at low temperatures. To exploit these possibilities it is important to

understand the physics of the nanotube-metal contacts and to experimentally demonstrate

low resistance contacts in a reproducible manner. The contact between carbon nanotubes

and metal can occur at the end of the tube (end-contact) 5,6 and along the circumference of

the tube (side-contact) 2'T'8. The low contact resistance in Refs. 5 and 6 are due to strong

interaction between metal and carbon atoms at the end of the nanotube, or/and due to lack

of tranlational symmetry. 9 From a more basic view point, transport through end-contacted

nanotubes with caps show interesting effects due to localized states. 1° In comparison, the

interaction between metal and carbon atoms in side-contaced nanotubes is weak. The metal

can make contact to carbon atoms located either over a sector 2 or the entire circumference

of the nanotube. 8

Recently, Tersoff in a perceptive paper 9 qualitatively discussed the importance of k-vector

conservation in nanotube transport experiments. For free electron like metal contacts, the

important physical quantities are the diameter and chirality of the nanotube, Fermi wave

vector of the metal, area of contact, and details of the metat-nanotube contact. In this

paper, we study tile physics of side-contacted nanotube-metal contacts relevant to these

experiments 2,s along the lines of Ref. 9 by addressing how these physical quantities affect

the transmission of electrons from the nafmtube to the metal contact. For small diameter

nanotubes, our conclusions do not fully agree with Ref. 9. Our calculations also show that the

condutance scales with contact length, a phenomena that has been observed experimentally

in references 2 and 8. In the remainder of the paper, we first discuss the salient results using

simple arguments. We then present results from numerical calculations to support these
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arguments.

Basic idea: The first Brillouin zone of graphene touches the Fermi surface at six points.

Of these only two points are inequivalent (that is, do not differ by a reciprocal lattice vector).

The conduction properties of graphite at low bias are controlled by the nature of eigen states

around these points. Consider a metal making uniform contact to graphene. The in-plane

wave vector should be conserved when an electron tunnels from the metal to the nanotube.

As a result, for good coupling between metal and graphene, the metal Fermi wave vector

should be comparable to 4_'/3a0, which corresponds to the Fermi wave vector of graphene.

a0 is the lattice vector length of graphene.

To discuss the case of nanotubes making contact to metal, we consider the scattering

rate (1�re-,n) from the metal to nanotube within the Born approximation,

1/T _mo<< ' lH -mt'X'm> (1)

where, _,,_ (_c) is the metal (nanotube) wave function and Hc-m represents the nanotube-

metal coupling. The wave function of an (n,m) nanotube is, _ = eik*_¢¢, where kt is the

axial wave vector, u is the 1D unit cell length, p is an integer representing the various unit

cells and ¢_ is a vector representing the wave flmction of all atoms in a unit cell. It is

assumed that the wave function of the metal is separable in the axial and radial directions

of the nanotube, I_,n >= eik"_l¢,,_ >, where km is the metal wave vector component along

tile nanotube axis. When the coupling between tile nanotube and metal is uniform, the

scattering rate is [gq. (1)],

P

where, the summation is performed over all unit cells making contact to metal and t_-m

represents a uniform coupling constant between the metal and nanotube. It is clear from

Eq. (2) that provided the metal and nanotube make contact over several unit cells, wave

vector conservation along the axial direction is enforced as E_, ei(k"_-k')m" "" 8(k,,, - kt).

The axial wave vector corresponding to E = 0 are 2 r/aa0 and 0 for armchair and zigzag
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tubes respectively,and the wavevector for other chiralities variesbetweenthesetwo limits.

As a result, the threshold value of Fermi wave vector below which coupling betweenan

armchair (zigzag) nanotube and metal is poor is 2_r/3a0(0). The threshold value of the

metal Fermi wavevector for chiral tubes is in betweenthat of zigzagand armchair tubes.

As the diameterof the nanotubeincreases,wavevector conservationalong the cirumference

also becomesimportant, as the strip approachesa graphenesheet.

Method: The method used to calculate transmissionis the sameas that in reference

4, with the only addition being the connectionof a metal contact,u The metal contact has

a rectangular crosssectionand is infinite in the third dimension[Fig. 1]. Sucha geometry

is similar to the experimentalset up in reference2. A perfectly cylindrical nanotubewould

touch the metal surfaceonly alonga line. To simplify modelingthis interface,westretch the

entire circumferenceof the nanotube over the metal surface. The surfaceGreen's function

of the metal is calculatedwithin the free electronapproximation usingstandard procedures

and the strengthof the nanotube-metalcouplingusedaregivenin Table 1. The transmission

and local densityof statesarecalculatedin a structure that canbeconceptuallydivided into

four parts: sectionof the nanotube (D), which lies on the metal electrode(M), semi-infinite

regionsof the nanotube L and R [Fig. 1]. The Hamiltonian of the system can be written as,

H = -Tic+ H,,_ + Hc-m and

Hc = Ht) + HL + HR + HLt) + HRD

(3)

(4)

where, Hc is the pi-clectron tight binding Hamiltonian of the nanotubc. [[LD at_d Hnv

are terms in the Hamiltonian coupling D to L and R respectively. H,,, and [I__,,+ are the

free particle and nanotube-metal coupling terms of the Hamiltonian. The Green's function

G _ is obtained by solving: [E - Ho - _LW_ E_ - _,,+] G"(E) = I, where the self energy

E_, = 21s_ 9/, _, ((+t E L, R and M). 9_ is the surface Green's function of terminal c_. Tile

transmission probability [T,+z] is given by,

Toz(E) : Trace[r.(E)G (5)
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where, a and 13 represent two different terminals across which transmission is calculated

and F_, = 21,_ Im[g_] Va is the coupling to terminal a. Finally, this is a non self-consistent

calculation.

Results and Discussion: We first present results for dependence of tile threshold value

of the metal Fermi wave vector on chirality, using armchair and zigzag tubes connected to the

metal contact. We then discuss the dependence of the diameter dependence of conductance

using the case of a zigzag tube as an example. Finally, the case of disorder in coupling

between the nanotube and metal is considered. We consider only weak coupling between

the nanotube and metal. The average value of the diagonal elements of the coupling strength

I_M are tabulated in Table 1 for the various values of the metal Fermi wave vector considered.

We calculate the transmission versus contact length between nanotube and metal for various

Fermi wave vectors in the metal and all atoms around the circumference of the tube are

assumed to make uniform contact with the metal. We emphasize that our results are also

fully valid in the case where only a sector of atoms along the cirumference of the nanotube

make contact to the metal such as in Ref. 2.

In the case of armchair tubes, when the metal Fermi wave vector k/is smaller than 27r/3ao

(0.851t-l), TML does not change significantly with contact length as shown for k/= 0.751t -1

in Fig. 2(a). For values of k/above the threshold, tile transmission monotonously increases

with an increase in contact length. The monotonic increase is due to weak metal-nanotube

coupling, in which case an increase in contact length simply results in an increase in the

transition probability to scatter from metal to nanotube.t2 The transmission will eventually

saturate with increase in contact length as there are only two conducting modes at the band

center. For the configuration considered [Fig. 1], T_L can have a maximum value of unity.

TIle second feature of Fig. 2(a) is the increase in transmission with increase in k I. This can

be understood by noting that electrons with a wave vector component along the nanotube

axis that is larger than 27r/3a0 scatter from the metal to nanotube, and a larger k/implies

a large number of available metal electron states. For the purpose of these calculations, we

considered a (2,2) armchair tube; The essential physics would in principle be true for the
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more realistic (10,10) nanotube also.

The caseof zigzag tubes is different becausebands at E = 0 cross at k = 0. Then,

electrons in the metal electrode with any kf (no threshold) can scatter into a metallic

zigzag tube. The results for a (3,0) tube are shown in Fig. 2(b). Here, there are two

important points. The first point is that as there is no threshold metal Fermi wave vector,

the transmission increases monotonically with contact length even for kf = 0.4,1-1. The

second point is that the transmission for k s equal to 0.75S1-1 and 1.21t -1 are much smaller

than that for armchair tubes [Fig. 2(a)]. The is because the nanotube wave vector around

the circumference (kc) of a zigzag tube is large, kc = 4rc/3ao for the crossing bands and this

has the effect of making the overlap integral [Eq. (1)] small at E=0. As kS = 1.75A -1 is

larger than the threshold for graphite, the transmission probability is larger, and comparable

to that for armchair tubes [Fig. 2(5)].

What happens when the diameter increases? In the limit of large diameter, a nanotube

is akin to graphene and the threshold k s- to couple well with metal should approach 41r/3a0.

Numerically, it is difficult to simulate a large diameter tube due to problems associated with

the time and memory required to calculate g]t. So we instead compare a zigzag tube of

two diameters to convey this point. Fig. 3 compares the transmission versus contact length

of the (3,0) and (6,0) nanotubes; The (6,0) nanotube has double the diameter of the (3,0)

nanotube. The (6,0) correspondingly has a smaller transmission and the trend of decrease

in transnfission will continue with further increase in diameter. Infact for large diameters,

as tile diameter increases the threshold value of kf is expected to change to ,ln/3a0 in a

manner that depends inversely on the nanotube diameter.

We now address the role of disorder. Disorder in either the nanotube, metal or nanotube-

metai coupling will in general result in larger transmission when compared to the disorder-

free case. Wave vector conservation is relaxed due to scattering from defects and transmission

will increase with increase in contact length even when the melal k I is below the threshold

value. We consider the case of disorder in nanotube-metal coupling (H__,,,). Disorder in 'all

elements of the coupling between the nanotube and metal was introduced randomly. The
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disorder in couplingof atom i to the metal contact can be written as, ti = c_ta" + (1- a)t[ a'd,

where t _ is the average value of ti over all sites connected to the metal and a is a fraction

between zero and unity, t__"d is the random component whose average is equal to t _. In Fig.

2(b), the two strengths of disorder correspond to c_ = 0 and c_ = 0.5 (smaller c_ corresponds

to larger disorder), such that t _" has the same value as that in Fig. 2(a). For an armchair

tube in contact with a metal with kf = 0.75,_1-1, the transmission was very small and more

importantly did not vary with contact length [Fig. 2(a)]. Introducing disorder changes

this trend and causes a monotonic increase in transmission with length of contact [Fig. 4].

Similarly, for large diameter tubes, in the presence of disorder there should be significant

transmission when k! is smaller than the threshold 4_/3a0. The requirement of wave vector

conservation is also relaxed when the phase coherence length is small. So we expect the

coupling to improve with decrease in phase coherence length.

Conclusions: In this paper, we addressed some aspects of the physics of a nanotube

side-contacted to metal, a problem of current importance. The main result is that cou-

pling of carbon nanotubes to metal depends on both chirality and diameter. Wave vector

conservation of an electron scattered from the nanotube to metal plays a central role in

determining the properties. The difference between small and large diameter nanotubes is

that while in the former wave vector conservation is important only in the axial direction, in

the latter it is important in both the axial and circunfferential directions. As a result, small

diameter armchair and zigzag tubes have a cut-off value of the metal Fermi wave vector

equal to 2r_/3(10 and zero, respectively. For chiral tubes, tile cut-off value of the metal Fermi

wave vector lies in between these two limits, with the value decreasing with increase in chiral

angle. A large diameter nanotube is akin to a graphene sheet and the cut-off value of the

metal Fermi wave vector in this case approaches 4rr/3,,o with increase in diameter. Disorder

in the metal, nanotube or their coupling relaxes the requirement of k-vector conservation

and in general improves coupling. The groups of references 2 and 8 have shown increase

in conductance with contact length. In this paper, we discussed two situations that could

lead tothis. The first situation requires the metal Fermi wave vector to be larger than the
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threshold discussedand holds evenwhenthere is nodisorder. The secondsituation requires

disorder in coupling to the metal but there is no restriction on the valueof the Fermi wave

vector.
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FIGURES
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Fig. 1: A metal making contact to a nanotube. The (x, z) dimensions of the metal form a

rectangular cross section with lengths (Lx, Lz). The y direction is infinitely long.
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Fig. 2: Transmission probability for (a) armchair and (b) zigzag tubes versus contact length

in number of unit cells of the nanotube. (a) The main point here is that for the metal Fermi wave

vector smaller than the threshold 21r/3a0, coupling between the naaaotube and metal is small and

increasing the contact length does not change the transmission probability. For metal Fermi wave

vector larger than 2r/3ao, the transmission probability increases with increase in contact length

and also with increase in kI for a given contact length. (b) The main point here is that there is

no threshold in the metal Fermi wave vector. Even in the case of a small value of the metal Fermi

wave vector (0.4_1-1), the transmission increases with increase in the contact length, albeit the

magnitude of transmission is small. As in the armchair case, the transmission probability increases

with increase in k I for a given contact length. The kI = 0.4, 0.75 and 1.2)I values of TML have

been multiplied by ten times their rcal values.
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Fig. 3: Comparison of transmission probability of (3,0) and (6,0) nanotubes versus contact

length in number of unit cells of the nanotube. The transmission probability decreases with in-

crease in diameter and for a very large diameter tube (akin to a graphene sheet), the transmission

probability will be appreciable only when the metal Fermi wave vector is larger than 41r/3ao.
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Fig. 4: Comparison of transmission probability versus contact length for a (2,2) armchair tube,

with and without disorder in nanotube-metal coupling. The metal Fermi wave vector is 0.75)1-1.

Note that for the case without disorder, the transmission is poor and increasing the contact length

does not help. Introducing disorder changes this picture and the transmission begins to increase

with increase in contact length because k-vector conservation is relaxed.
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